Astronomy SOL Review

Origin and Evolution of the Universe

- universe is vast and very old
 - much of information about our galaxy and universe comes from ground-based observations
- Big Bang Theory: states the universe began in a very hot and dense sphere that expanded and eventually condensed into galaxies; best current model of the origin of the universe
- Solar nebular theory: explains that the planets formed through condensing of the solar nebula; best current idea for the origin of the solar system
- stars: have a finite lifetime and evolve over time; form by condensation of interstellar gas
 - · stars form by condensation of interstellar gas
 - Hertzsprung-Russell diagram illustrates relationship between absolute magnitude and surface temperature of stars

- · mass of star controls its evolution, lifetime length, and ultimate fate
- galaxies: collections of billions of stars
- · Basic types: spiral, elliptical, irregular
- light year: distance light travels in one year; most commonly used measurement for distance in astronomy

Solar System

- consists of many types of celestial bodies, including sun, nine planets (at this time) and their moons, comets, meteors, and asteroids
- still learning more about solar system through space exploration efforts
- · Apollo 11: first manned landing of the moon
- Hubble Space telescope has greatly improved our understanding of the universe
- located in the Milky Way galaxy
- moons: natural satellites of planets that vary widely in composition
- sun: star consisting largely of hydrogen gas; energy comes from nuclear fusion of hydrogen to helium
- comets: orbit the sun and consist mostly of frozen gases
- asteroids: rocky or metallic iron objects ranging in size from millimeters to kilometers; source of most meteorites

Planets

order of planets from sun: Mercury → Venus → Earth → Mars →
 Jupiter → Saturn → Uranus → Neptune → Pluto

- two types of planets in our solar system: terrestrial and gas giants
- four inner terrestrial planets consist mostly of solid rock
- four of outer planets ("gas giants") consist of thick outer layers of gaseous materials, perhaps with small rocky cores
- fifth outer planet is Pluto: has an unknown composition; appears solid
- Earth: third planet from the sun; located between the sun and the asteroid belt: one natural satellite – the moon
 - Revolves elliptically around the sun (365.25 days = 1 revolution), tilted on its axis – causes seasons (equinoxes and solstices)
 - water's state (ice, liquid, vapor) on Earth depends on Earth's position in solar system
- the moon: revolves around Earth (1 revolution = 24 hours) creating moon phases and eclipses
 - solar eclipses occur when the moon blocks out sunlight from the Farth's surface
 - lunar eclipses occur when Earth blocks sunlight from reaching the moon's surface
- tides: daily, periodic rise and fall of water level caused by the gravitational pull of the sun and the moon

Meteorology SOL Review

The Origins of Earth's Atmosphere

- composition of Earth's atmosphere has changed over geologic time
- early atmosphere contained little oxygen and more carbon dioxide that today's atmosphere
- early photosynthetic life such as cyanobacteria (blue-green algae) contained carbon dioxide and generated oxygen
- after early photosynthetic life generated oxygen, animal life became possible

Other Planets' Atmospheres

- Venus's atmosphere is mostly carbon dioxide and is very dense
- Mars's atmosphere is mostly carbon dioxide and very thin

Earth's Atmosphere Today

- Earth's atmosphere is unique in the solar system in that it contains substantial oxygen (21% oxygen, 78% nitrogen, 1% trace gases)
- human activities have increased the carbon dioxide content of Earth's atmosphere
- man-made chemicals have decreased the ozone concentration in the upper atmosphere
- volcanic activity and meteorite impacts can inject large quantities of dust and gases into the atmosphere
- ability of Earth's atmosphere to absorb and retain heat is affected by the presence of gases like water vapor and carbon dioxide

Weather and Climate

- weather: describes day-to-day changes in atmospheric conditions
- energy transfer between the Earth's surface and the atmosphere creates the weather
- · convection in the atmosphere is a major cause of weather
- convection is the major mechanism of energy transfer in the oceans, atmosphere, and the Earth's interior
- tornado: narrow, violent, funnel-shaped column of spiral winds that extends downward from the cloud base toward Earth
- hurricane: tropical cyclone (counterclockwise movement of air) characterized by sustained winds of 120 kilometers per hour (75 miles per hour) or greater
- climate: describes the typical weather patterns for a given location over a period of many years
- four major factors affecting climate: latitude, elevation, proximity to bodies of water, position relative to mountains
- · Earth's major climate zones: polar, temperature, tropical
- both weather and climate are measurable to an extent predictable

	Symbol		Symbol
Rain	•	Fog	=
Drizzle	9	Thunderstorm	K.
Shower	∇	Hail	A
Snow	*		

combinations of these can be made, e.g. $\stackrel{\bullet}{\nabla}$ rain shower, $\stackrel{\star}{\nabla}$ snow shower

The Sun

- Earth's surface is much more efficiently heated by the sun than is the atmosphere
- amount of energy reaching any given point on the Earth's surface is controlled by the angle of sunlight striking the surface and varies with the seasons
- areas near the equator receive more of the sun's energy per unit area than areas nearer the poles

Winds

- winds are created by uneven heat distribution at the Earth's surface by the sun and are modified by the Earth's rotation (influenced by the Coriolis effect)
 - Coriolis effect causes deflections of the atmosphere due to the Earth's rotation
 - · flows from high to low pressure

Clouds

- the conditions for *cloud formation* are air at or below the dew point and the presence of condensation nuclei
- cloud droplets can join together to form *precipitation*
- types: cirrus: light, thin, feathery (fair weather clouds); cumulus: puffy white clouds; stratus: low gray clouds

Measuring Devices

- thermometer: measures temperature
- barometer: measures atmospheric pressure
- psychrometer: measures relative humidity

Weather Maps

- weather moves from west to east in the US
- symbols for cold fronts, warm fronts, pressure and precipitation should be known
 - · high pressure (H): fair weather, circulates clockwise and air sink
 - low pressure (L): bad weather, circulates counterclockwise and air rises
 - air from high pressure always moves to areas of low pressure (gradients)
- cold fronts: cold air invades warm air; rain and thunderstorms
- warm fronts: warm air invades cold air; steady rain
- isotherms: lines of equal temperature (like contours)
- isobars: lines of equal pressure (like contours)

Geology SOL Review

Rocks and Minerals

- rocks and minerals are different
- minerals: naturally occurring inorganic solid substance with a definite composition and structure
 - can be identified by physical properties (hardness, color, luster, streak)
 - important to human wealth and welfare
 - major rock-forming minerals:

quartz

feldspar

mica

ore minerals:

pyrite

graphite

sulfur

most abundant group: silicates (contain the elements silicon and oxygen)

- rocks: most made of one or more minerals
 - can be identified based on mineral content and texture
 - defined by the processes by which they are formed: igneous, sedimentary, metamorphic
 - igneous rocks: form from molten rock that cools and harden either below or on the Earth's surface
 - extrusive igneous rocks: have small or no crystals resulting in fine-grained or glassy textures

pumice

obsidian basalt

intrusive igneous rocks: have larger crystals and a coarser texture

granite

- sedimentary rocks: may either form from rock fragments or organic matter bound together or by chemical precipitation
 - clastic sedimentary rocks: made up of fragments of other rocks

sandstone conglomerate shale

non-clastic sedimentary rocks:

limestone rock salt

- limestone only rock that can be formed both chemically and organically
- metamorphic rocks: form when any rock is changed by the effects of heat, pressure, or chemical action; can be foliated or unfoliated (nonfoliated)
 - foliated metamorphic rocks: have bands of different minerals

schist gneiss

unfoliated metamorphic rocks: have little or no banding and are relative homogenous

marble quartzite

Fossils

- is the remains, impressions or other evidence preserved in rock of the former existence of life (can be ancient or often extinct)
- some ways fossils can be preserved include molds, casts, and original bone or shell
- nearly all fossils are found in sedimentary rocks
- fossil evidence indicates that life forms have changed and become more complex over geologic time

Dating

- Earth is very ancient → about 4.6 billion years old
- history of Earth and age of rocks can be investigated and understood by studying rocks and fossils
- relative time places events in a sequence without assigning any numerical ages
 - fossils, law of superposition, and law of crosscutting relationships are used to determine the relative ages of rocks
 - law of superposition: the oldest layers are on the bottom and get younger as you go up in an undisturbed rock layer

law of crosscutting relationships: igneous intrusion (and fault) is younger than the layers it cuts across

- absolute time places a numerical age on an event
 - radioactive decay is used to determine the absolute age of rocks
 - carbon-14 dating: used for dating organic material up to 50,000
 - uranium: dates the oldest rocks—up to 4.5 billion years
 - half-life: amount of time it takes for 50% of a radioactive parent isotope to break down into its stable daughter product

Geologic Time

- three major divisions: eras, periods, epochs
 - eras: largest division → ends with extinction events
 - periods: based on index fossils (abundant, worldwide, short-lived)
 - epochs: smallest; based on types of life (only in Cenozoic Era)
- Precambrian Era: 90% of all geologic history
 - oxygen not present initially (carbon dioxide instead)
 - blue-green algae (cyanobacteria) produced oxygen leading to creation of ozone and our atmosphere today
- Paleozoic Era: Age of Invertebrates; creation of Pangaea
- Mesozoic Era: Age of Reptiles; dinosaurs; Pangaea break apart
- Cenozoic Era: Age of Mammals; man
- today: we live in Cenozoic Era; Quaternary Period; Recent Epoch

Earth's Composition

- solid, mostly iron inner core; a liquid, mostly iron outer core; a rocky, plastic mantle; and a rocky, brittle crust
 - core, mantle, and crust are dynamic systems constantly in motion
 - two types of crust: oceanic and continental → each has very different characteristics
 - ocean (basalt) crust is relatively thin, young, and dense
 - continental crust is relatively thick, old, and less dense
 - · Earth's crust major elements: oxygen, silicon, aluminum, and iron

Tectonic Plates

- lithosphere: made of Earth's crust and some of mantle; is divided into plates that are in motion with respect to one another
 - plate motion occurs as a consequence of convection in the Earth's mantle
 - · plate tectonics is driven by convection in the Earth's mantle
 - relative plate motions and plate boundaries are <u>convergent</u> (subduction and continental collision), <u>divergent</u> (sea-floor spreading), or <u>transform</u>
 - most geologic activity (earthquakes, volcanoes, mountain building) due to relative motion along plate boundaries
- convergent boundaries' features: collision zones (folded & thrust-faulted mountains) and subduction zones (volcanoes, trenches)

- divergent boundaries' features: mid-ocean ridges, rift valleys, and fissure volcanoes
- transform boundaries' features: strike-slip faults San Andreas Fault

divergent boundary convergent boundary transform boundary

- earthquake activity is associated with all plate boundaries; result when movement occurs along a fault; 3 seismograph stations needed to locate the *epicenter* of an earthquake
 - <u>faults</u> are breaks or cracks in the crust along which movement has occurred
 - most active faults are located at or near plate boundaries
- <u>folds</u> form when rocks are compressed horizontally and their layers can be deformed into these wave-like forms
 - commonly occurs during continent-continent collisions
- volcanoes openings where magma erupts onto the Earth's surface
 - most volcanic activity associated with subduction, rifting, or sea-floor spreading
 - hot-spot volcanic activity (example: volcanic islands) is exceptional in that it is not related to plate boundaries
- continental drift: consequence of plate tectonics

- Coastal Plain: flat area underlain by young, unconsolidated sediments produced by erosion of the Appalachian Mountains and deposited here
- Piedmont: area of rolling hills underlain by mostly ancient igneous and metamorphic rock
 - igneous rocks are the roots of the volcanoes formed during an ancient episode of subduction that occurred before the formation of the Appalachian Mountains
- Blue Ridge: high ridge separating the Piedmont from the Valley and Ridge Province
 - $\cdot\;$ billion-year old igneous & metamorphic rocks are the oldest in VA
- Valley and Ridge Province: area with long parallel ridges and valleys underlain by ancient folded and faulted sedimentary rocks
- folding and faulting of the rocks occurred during the collision between Africa and North America
- collision occurred during the late Paleozoic Era and produced the Appalachian Mountains
- Appalachian Plateau: area with rugged, irregular topography and underlain by ancient, flat-lying sedimentary rocks
 - · actually a series of plateaus separated by faults
 - · most of VA's coal resources found here
- VA fossils are found mainly in the Coastal Plain, Valley and Ridge, and Appalachian Plateau provinces
- most are of marine organisms

 this indicates that large areas of the state were covered periodically with sea water
- · Paleozoic, Mesozoic, and Cenozoic fossils found in VA
- VA major rock and mineral resources: limestone (concrete), coal (energy), gravel and crushed stone (road construction)

Rock Cycle

 process by which all rocks are formed and how basic Earth materials are recycled through time

Weathering and Erosion

- weathering, erosion, and deposition are interrelated processes
 - weathering: process by which rocks are broken down chemically and physically by the action of water, air, and organisms
 - mechanical weathering: broken down into pieces without a chemical change (frost/ice wedging)
 - <u>chemical weathering</u>: changes into something chemically different (rusting oxidation)
 - erosion: process by which Earth materials are transported by moving water, ice, or wind (water is biggest)
 - greatest in high relief areas (steep)
 - deposition: process by which Earth materials carried by wind, water, or ice settle out and are deposited
 - greatest in low relief areas (flat, low, sea level) such as delta, barrier island, beaches and dunes, alluvial fan

Soil

- loose rock fragments and clay derived from weathered rock mixed with organic material (humus)
- soil horizons move from parent rock to more developed soil horizons
- <u>sediment</u>: smallest to largest: clay (settles out last) → silt → sand → gravel (settles out first)

A horizon humus and dark in color (topsoil)

B horizon lighter in color and leaching has brought minerals down from topsoil

C horizon weathered parent material

Karst topography

- developed in areas underlain by carbonate rocks including limestone and dolomite
- includes features like caves and sinkholes
- forms when limestone is slowly dissolved away by slightly acidic groundwater
- where limestone is abundant in the Valley and Ridge province of VA, this is common

<u>Freshwater</u>

- a substantial amount of water is stored in permeable soil and rock underground
 - <u>permeability</u>: measure of the ability of a rock or sediment to transmit water or other liquids (gravel, sand)
 - water doesn't pass through impermeable materials (clay)
- Earth's water supply is finite
 - geological processes (erosion) and human activities (waste disposal) can pollute water supply
- water is continuously being passed through the hydrologic cycle
- fresh water is necessary for survival and most human activities
- three major regional watershed systems in VA lead to Chesapeake Bay (between MD and VA), NC Sounds, and Gulf of Mexico (borders TX, LA, MS, AL, and FL)

Groundwater

- zone of aeration: soil
- water table: on top of zone of saturation
- · aquifer: layer of rock that stores and transports water freely

Hydrologic Cycle

Resources

- resources are limited and are either renewable or non-renewable
- renewable resources: can be replaced by nature at a rate close to the rate at which they are used
 - examples: vegetation, sun light, surface water
- · non-renewable resources: are renewed very slowly or not at all
 - examples: coal, oil, minerals
 - <u>fossil fuels</u> are non-renewable and may cause pollution; however they are relatively cheap and easy to use
- there are advantages and disadvantages to using any energy source
- VA has many natural resources
- modern living standards are supported by extensive use of renewable and non-renewable resources
- extraction and use of any resource carries an environmental cost that must be weighed against economic benefit

Oceanography SOL Review

Oceans

- is a dynamic system in which many chemical, biological, and physical changes are taking place
 - large current systems present in the oceans that carry warm water toward the poles and cold water toward the equator created by Coriolis Effect and wind
 - <u>sea level</u> falls when glacial ice caps grow and rises when the ice caps melt
- are environmentally and economically important
 - <u>algae</u> in the oceans are an important source of atmospheric oxygen
 - are an important source of food and mineral resources as well as a venue for recreation and transportation
 - human activities and public policy have important consequences for the oceans
 - · its resources are finite and can be overexploited
 - impact of human activities such as waste disposal, construction, and agriculture affect the water quality within watershed systems and ultimately the oceans
 - pollution and over-fishing can harm or deplete valuable resources
 - chemical pollution and sedimentation are great threats to the chemical and biological well-being of estuaries and oceans
- is the single largest reservoir of heat at the Earth's surface
 - convection is the major mechanism of energy transfer between the oceans, atmosphere, and the Earth's interior
 - stored heat in the ocean drives much of the Earth's <u>weather</u> and causes <u>climate</u> near the ocean to be milder than climate in the interior of the continents

<u>Estuaries</u>

- Chesapeake Bay is an example
- are areas where fresh and salt water mix → produces variations in salinity and high biological activity

Upwellings

 bring cold, nutrient-rich water from the deep ocean to the surface and are areas of rich biological activity

Tides

 are the daily, periodic rise and fall of the water level caused by the gravitational pull of the sun and the moon

Topographic Features

- seafloor topography is at least as variable as that on the continents
- features related to plate tectonic processes include <u>mid-ocean</u> <u>ridges</u> and <u>trenches</u>

other major topographic features of the oceans include <u>continental</u> <u>shelves</u>, <u>continental slopes</u> (have canyons; extreme sediment movements), <u>abyssal plains</u> (flattest area on Earth; quickly fills with sediments), and <u>seamounts</u> (underwater volcanoes)

Scientific Investigation SOL Review

Density

- density = mass/volume
- units: g/mL or g/cm3
- is the same no matter how much of an object you have at the same temperature

Experimental Design

- there can be more than one explanation for any phenomena
- hypothesis: can be supported, modified, or rejected based on collected data
 - are tentative explanations that account for a series of facts and can be tested by further investigation
 - experiments are designed to test hypotheses
 - · any valid hypothesis can be tested
- scientific laws: generalizations of observation data that describe patterns and relationships
 - · may change as new data becomes available
- scientific theories: are systematic steps of concepts that offer explanations for observed patterns in nature
 - · provide frameworks for relating data and guiding future research
 - · may change as new data becomes available
 - any valid scientific theory has passed tests designed to invalidate it
- conclusions: are only as good as the quality of the collected data

Maps

- map scale: relates unit of length on a map to actual distance
- latitude: lines run parallel to the equator; measure north and south
- longitude: lines intersect at the poles; measure east and west
- 60 minutes in 1 degree; 60 seconds in 1 minute
- equator: 0° latitude
- prime meridian: 0° longitude

Topographic Maps

- shows the shape of the Earth's surface using contour lines
- contour lines: imaginary lines that join points of equal elevation on the surface of the land above and below a reference surface (can be sea level)
- includes symbols for streets, buildings, streams, vegetation
- measure changes in elevation
- when contour lines are close together, the area is steep (getting closer to hilltops)
- depressions or holes are identified by lines within a circle
- valleys will have contour lines very spread apart

